The Development of Muscle Fiber Type Identity in Zebrafish

نویسندگان

  • Stephen Devoto
  • Sara E. Patterson
  • Stephen H. Devoto
چکیده

Cranial skeletal muscles underlie breathing, eating, and eye movements. In most animals, at least two types of muscle fibers underlie these critical functions: fast and slow muscle fibers. We describe here the anatomical distribution of slow and fast twitch muscle in the zebrafish (Danio rerio) head in the adult and at an early larval stage just after feeding has commenced. We found that all but one of the cranial muscles examined contain both slow and fast muscle fibers, but the relative proportion of slow muscle in each varies considerably. As in the trunk, slow muscle fibers are found only in an anatomically restricted zone of each muscle, usually on the periphery. The relative proportion of slow and fast muscle in each cranial muscle changes markedly with development, with a pronounced decrease in the proportion of slow muscle with ontogeny. We discuss our results in relation to the functional roles of each muscle in larval and adult life and compare findings among a variety of vertebrates.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The zebrafish slow-muscle-omitted gene product is required for Hedgehog signal transduction and the development of slow muscle identity.

Hedgehog proteins mediate many of the inductive interactions that determine cell fate during embryonic development. Hedgehog signaling has been shown to regulate slow muscle fiber type development. We report here that mutations in the zebrafish slow-muscle-omitted (smu) gene disrupt many developmental processes involving Hedgehog signaling. smu(-/-) embryos have a 99% reduction in the number of...

متن کامل

Positive and Negative Regulation of Muscle Cell Identity by Members of the hedgehog and TGF-β Gene Families

We have examined whether the development of embryonic muscle fiber type is regulated by competing influences between Hedgehog and TGF-beta signals, as previously shown for development of neuronal cell identity in the neural tube. We found that ectopic expression of Hedgehogs or inhibition of protein kinase A in zebrafish embryos induces slow muscle precursors throughout the somite but muscle pi...

متن کامل

Positive and Negative Regulation of Muscle Cell Identity by Members of the Hedgehog and TGF-Î2 Gene Families

We have examined whether the development of embryonic muscle fiber type is regulated by competing influences between Hedgehog and TGFb signals, as previously shown for development of neuronal cell identity in the neural tube. We found that ectopic expression of Hedgehogs or inhibition of protein kinase A in zebrafish embryos induces slow muscle precursors throughout the somite but muscle pionee...

متن کامل

Establishing a new animal model for muscle regeneration studies

Skeletal muscle injuries are one of the most common problems in the worldwide which impose a substantial financial burden to the health care system.  Accordingly, it widely accepted that muscle regeneration is a promising approach that can be used to treat muscle injury patients. However, the underlying mechanisms of muscle regeneration have yet to be elucidated. The muscle structure and muscle...

متن کامل

Zebrafish as a model for caveolin-associated muscle disease; caveolin-3 is required for myofibril organization and muscle cell patterning.

Caveolae are an abundant feature of many animal cells. However, the exact function of caveolae remains unclear. We have used the zebrafish, Danio rerio, as a system to understand caveolae function focusing on the muscle-specific caveolar protein, caveolin-3 (Cav3). We have identified caveolin-1 (alpha and beta), caveolin-2 and Cav3 in the zebrafish. Zebrafish Cav3 has 72% identity to human CAV3...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014